

Technical Note

Subject: New features in Risø TL/OSL software released Feb 2013

25-2-2013/TLAP

File format

With the addition of new attachments and features to the reader, it has been necessary to change the change the format of the BIN file. The new format will be stored as files with the extension .binx to indicate that it has been extended. New versions of Viewer (V. 4.20 and higher) and Analyst (V.4.10 and higher) support this format. The new versions will also be able to deal with the .BIN format and even future updated versions of the .binx format (with loss of header information that may be added later).

The version 3, 4 and 6 bin file format is documented in the "Sequence Editor" and "Viewer" manuals available on the home page <u>www.osl.risoe.dk</u> and in the *Manuals* folder after installation of the software. Version 5 has been used internally for a short period, and the new Analyst and Viewer versions will be able to read these files.

Sequence Editor V.4.20

Storage of background and uncorrected data

If you select "Save non-corrected and background data" in the sequence options, both non-corrected, background and corrected data will be stored if you choose background subtraction a TL command

Corrected data will be stored as CurveNo = 0, non-corrected as CurveNo = 1, and background data as CurveNo = 2.

CurveNo is a a parameter stored in the header which may be read with the Viewer and Analyst programs

Administration and use of irradiation dose rate calibrations

The TL/OSL reader will be used to estimate the dose that the samples have received after dose reset. In order to make the conversion to radiation dose, it is necessary to know the dose rate of the built-in source that is used in the measurement protocol. The irradiation dose rate will normally be established by a calibration procedure, and the calibration may vary with e.g. grain size and sample support.

The Sequence Editor has been extended with an "Irradiation dose rate" form in the "Options" menu, where the calibrations may be typed in.

-	Current [Gy/s]	Measured [Gy/s]	Meas. @date	Name	Comment	Edit
•	0.1074	0.1100	01-01-2012	Test cal	This is for coarse grain samples (150-250 um)	
2	0.0964	0.0987	07-01-2012	Fine grain	This is for fine grain samples	
2						
2						
elec	ct none					
ielec ha s	ct none					
ieleu ha :	ct none source: Current [Gy/s]	Measured [Gy/s]	Meas. @date	Name	Comment	
ielei ha :	ct none source: Current [Gy/s]	Measured (Gy/s)	Meas. @date	Name	Comment	
ielei ha :	ct none source: Current [Gy/s]	Measured (Gy/s)	Meas. @date	Name	Comment	Cancel
iha :	ct none source: Current [Gy/s]	Measured (Gy/s)	Meas. @date	Name	Comment	Cancel

In the form you may select a beta- and/or alpha- dose rate calibration. When a measurement is done, the current dose rate and associated dose rate error, i.e. measured dose rate and dose rate error corrected for radioactive decay, is stored with the data in the bin-file. This enables Analyst to make a conversion of estimated dose from *equivalent seconds* (s) to *Grays* (Gy).

To type in or edit a calibration you press "Edit", and press "Save" when you are done.

When the sequence run starts, the setup form shows which irradiation sources are used in the sequence, and if beta and/or alpha sources are used, the name of the currently selected calibration is shown

Sequence:	
The sequence will be started in a checks will be made of the seque Sequence Checks ↓ Uses blue stimulation ↓ Uses > 500°C ↓ Uses > 500°C ↓ Uses single grains ↓ Uses beta irradiation Cal: Fine grain A ↓ Uses alpha irradiation	tew moments. First, a few ence. Please wait System Checks Baud Rate: 115000 I⊽ Mini Sys Connection System ID: 334 I Elapsed Lamp Time I⊽ MiniSys Carousel Size : 48 (1.97s per position) I Dark Count I Calib. LED
 ☐ Uses X-ray irradiation ☐ Uses Pulsed OSL ☐ Uses Photon Timer ☐ Uses XRF ☐ Uses Sample camera ☐ Creates a log file 0 days 0 hrs 1 mins Estimated run time: 	

Support of new attachments

The Sequence Editor now supports the Sample Camera attachment. This means that if sample camera is selected in "System Options" then the "Options->Sample Camera Setup" appear and the "Photo" command may be selected for a cell in the sequence grid.

The Sequence Editor also supports a new model of Photon Timer board (TimeHarp 260). The model of Photon Timer board is selected in the "System Options" menu.

Updated help

The help function has been updated for all the Risø programs and changed to the compiled html type which is standard for later MS Windows version. The content of the Help file is now also available as a pdf manual for Sequence Editor and Viewer installed with the reader and available on the home page www.osl.risoe.dk

Analyst

Calculated dose in Gy

The user may select whether to work in seconds (default) or in Gy

unction	Çurve	Pitter a	Opti	ions												
250 200 150 50 0 0	10	20 30	40	Converte Gy Show error limits Show TayTo graph Show asymmetric errors 50 00 70 00 90 100	0.1201 0.1201 0.1201 0.1201	6 - 5 - 5 - 1 - 0 - 1	2		5 6 3	7 8	9 10	3 - 25 - 2 - 5 1.5 - 1 - 0.5 - 0	5 1	0 15 30 35 40 45 50 55 60	0 65 70	175
iument G lisc nun	irain ber:	1	3	e (s)	Lo/T	x Data	Summary D	lata	Tool Earl	Test BC	L. Tr	1 - 7 - F		Reader ID(62): Riso 2 Calibration 0.0560 ± 0.0020 Gy/s	on 12/	11/2
					N	Natural	50gmai	104	1014	100	0.593	0.037		Dose rate: 0.0546 ± 0.0020 Gy/s Parameters	on 25/1	11/2
					RI	0	113	104	938	125	0.011	0.014		Use prev. BG for test dose		E
					82	5	306	127	1055	140	0.196	0.021		Use recycled points for fitting Force growth curve through orig	in	E
egratic	n Limits				83	10	475	136	965	159	0.421	0.033				
pat 1		9 6	8		R.4	20	877	144	1021	168	0.859	0.050		Error Calculations Measurement error (21)	.0	8
· 2	J0 @	250 3	5		RS	40	1684	181	1037	182	1.758	0.087		Monte Carlo repeats: 1	000	8
John Jan	Number	48 (5			R.6	80	3029	224	1194	227	2.901	0.127		Incorporate error on curve fitti	ng	
						0	245	200	1048	202	0.053	0.020		Acceptance Criteria		
	_	✔ <u>U</u> pda	to	Curve Fitting: Exponential Y = a (1-exp[-(x+c)/b]) a: 9.7E+000±4.0E+000 b: 4.6E-003±2.1E-003 c: 1.1E-002±3.0E-001	<u>.</u>		Results ED (s): Recycling 0.97± 0.0 0.99± 0.0	1 20 (R 0/R -	3.74 ± 1.08	Becc	peration: ±0.50 s	(Intercept)		Recycling ratio limit (%) Max test dose enor (%) Max, palaeodose enor (%) Max, palaeodose enor (%)	10 10.0 10.0	00 00 00 00

When "Convert to Gy" is selected, dose response curve and De are converted from seconds to Gy

Sequence view

Now a "Sequence view" is introduced. In "Sequence view" the sequence that produced the data is shown and the selected data are highlighted as cells with a red background. You can switch freely between the "Classic view" and "Sequence view"

						-		
R Ana	lyst: cr2026c.BIN					6		
<u>File</u>	dit <u>R</u> ecords <u>A</u>	nalysis Export	<u>D</u> isplay <u>W</u> i	ndow Option	s A <u>b</u> out			٦
	🖗 🛛 🗙 🛛 🖷 I							
Bec.	Bun Number	Set Number	Data Tyne	Irrad. Time	Num, Points	Lumin, T	vne	
638	14	16	Natural	450.00	2000	IRSL	100	
639	17	16	Natural	150.00	110	TL		
640	18	16	Natural	150.00	2000	IRSL		
641	20	16	Natural	150.00	2000	IRSL		
642	23	16	Natural	450.00	110	TL		
643	1	16	Natural	80.00	1	OSL		
644	3	16	Natural	450.00	110	TL		
645	4	16	Natural	450.00	2000	IRSL		
646	7	16	Natural	150.00	110	TL		
647	8	16	Natural	150.00	2000	IRSL		
648	10	16	Natural	150.00	2000	IRSL		
649	13	16	Natural	450.00	110	TL		
650	14	16	Natural	450.00	2000	IRSL		
651	17	16	Natural	150.00	110	TL		
652	18	16	Natural	150.00	2000	IRSL		
653	20	16	Natural	150.00	2000	IRSL		
654	23	16	Natural	450.00	110	TL		
655	1	16	Natural	80.00	1	OSL		÷
4	2	10		450.00	110		•	-
Current	File					1.0	Disnlav Informa	stine
File:	cr20	26c.BIN	1			1	Position	_
Record	ls:	1068	250,000				Grain number	
Selecte	ed:	168	200,000				Set Number	Ξ
Highligh	hted:	1 6	470 000				Data Type	
Subtrac	t Background	E 8	150,000				rrad. Time Num. Points	
Allow d	ata to be shifted	0 ti	100,000				.umin. Type	
			50.000				.ow Hiah	
Normal	Isadon None	•	~~~~	_			Pate	
Time/T	emperature:		0 H ,				i emperature < Coordinate	
Lumine	scence Signal:		0 20	i 40 60 80 Ti	100 120 140 160 ne(s)	180 200	r Coordinate	
	10-14-15 12				- *	Therester	Jnn. Delay	
	10:14 13 nov 12					User: tiap		

Analyst: cr2026c.BIN cr20	26c.sec	
Eile Edit Records Analys	s Expor <u>t D</u> isplay <u>W</u> indow <u>O</u> ptions	s A <u>h</u> out
🗅 🥔 🖬 X 🛛 🛍 🛍	22	
Run 3	Run 4	Ru ^
Set 7 TL 251*C, 5.0	0°C/s, 110Pts., PH=250° OSL 50°	C IR diodes;200.00s;5*C/s;90.
Set 8 TL 251°C, 5.0	0°C/s, 110Pts., PH=250°(OSL 50°	C IR diodes;200.00s;5*C/s;90.
Set 9		
Set 10 TL 251*C, 5.0	0°C/s, 110Pts., PH=250°(OSL 50°	C IR diodes;200.00s;5*C/s;90.
Set 11 TL 251*C, 5.0	0°C/s, 110Pts., PH=250* OSL 50*	C IR diodes;200.00s;5*C/s;90.
Set 12 TL 251°C, 5.0	0°C/s, 110Pts., PH=250°(OSL 50°	C IR diodes;200.00s;5*C/s;90.
Set 13 TL 251°C, 5.0	0°C/s, 110Pts., PH=250°(OSL 50°	C IR diodes;200.00s;5*C/s;90.
Set 14 TL 251°C, 5.0	0"C/s, 110Pts., PH=250"(OSL 50"	C IR diodes;200.00s;5*C/s;90.
Set 15		
Set 16 TL 251°C, 5.1	0°C/s, 110Pts., PH=250°C 08L 50°	C IR diodes;200.00s;5*C(s;90)
Set 17	0.01 5.01	
SEL 10 TL 2E11C E (DiClo 110Dia Dil-250% Davias 4	2000
Set 19 11. 251 0, 5.0	OSI COL	CID diodect200_00ctEtClct90
Set 21	001 30	
Set 22		
Set 23	OSL 50	C IR diodes:200.00s:5*C/s:90.
Set 24 TL 251*C, 5.0	0°C/s, 110Pts., PH=250°(Pause 4	000s
2.00		
Connet Ele		Direles Information
Filer kr2023e fading F	N 180.000 t	4. III Set 16 Bu
Records: S	0 _ 160,000 -	Disc.
Selected: 3	6 2 140,000	- Disc:
Highlighted:	1 5 120,000	- 🖉 Disc.
Subtract Background	* 80,000	- V Disc
Allow data to be shifted	5 60,000	Disc:
Normalisation None	40,000	
Current Mouse Position	20,000	
Time/Temperature:	0 20 40 60 60	100 120 140 160 180 200
Luminescence Signat	5 10 40 00 UT	ne (s) () () () () () () () () ()

"Classic view"

"Sequence view"

Customised graphs

All graphs in Analyst can now be customised, e.g.:

- Log axes
- Font size
- Axis labels
- Symbol size
- Line thickness

Recuperation acceptance criteria

unction Curve Fitting Opt	ions											
250- 250- 150- 100- 50- 100- 50- 100- 50- 10-	- 108.000 - 108	1 0 0 0 0 0 0 0 0 0 0	1 9 8 7 5 5 4 3 2 1 0	1 2	3 4	5 6		9 10	3 25 2 15 15 15 05	×		1
Current Grain	e (5)	1.17	vîlala	6-mm-1		. cjue					Basder IDIS2: Bits 2	
Disc number: 1 🚡		UM I	Dose	Simal	BG	Test Size	Test BG	Ls/Ts	La Ta Er		Calibration 0.0560 ± 0.0020 Gµ/s on 12/	11/20
		N	Natura	634	104	1014	120	0.593	0.037		Parameters	11/20
		Rl	0	113	104	938	125	0.011	0.014		Use prev. BG for test dose Use prevaled points for fitting	
		R2	5	306	127	1055	140	0.196	0.021		Force growth curve through origin	ē
integration Limits		83	10	475	136	965	159	0.421	0.033		Face Colordations	
16: 20 B 20 B		R 4	20	877	144	1021	168	0.859	0.050		Measurement error (%) 1.0	
davinen Nenher ef		85	40	1684	181	1037	182	1.758	0.087		Monte Carlo repeats: 1000	۲
Jacs: 48 🖀		R.6	80	3029	224	1194	227	2.901	0.127		Incorporate error on curve fitting	
			0	245	200	1048	202	0.053	0.020	-	Acceptance Citeria	
(Annal) (United	Curve Fitting: Exponential Y = a (1-exp[-{x+c}/b]) a: 3.7E+000±4.0E+000			Results ED (Gy); Recycling	r	0.75 ± 0.0	Bec	uperation			Image: Construction of the construction of	
A Thomas	b: 8.4E 002±3.9E 002 c: 6.1E-004±1.6E-002			0.97±0 0.99±0 1.02±0	08 (R 8/R 09 (R 9/R 09 (R 9/R	4) 4) 8)	0.0	0±0.03 G	y [intercept]		Max Recup. (seconds) • 50	

New Acceptance criteria based on recuperation (uses the zero dose point) has been added. The criteria may be specified as % of Nat, % of signal from largest dose, or as an absolute value in Gy or secs

Double exponential fit

Single *Exponential* curve fitting is not OK for some samples, such as the one shown below. Now *Double Exponential* curve fitting is made available

Show asymmetric errors

It is now possible to show asymmetric errors, but currently these are NOT propagated through when combining $D_{e}\xspace$ values

inctio Curve Fitting	Options										
55,000 50,000 45,000 40,000 35,000	✓ Convert to Gy ✓ Show error limits ✓ Show Ts/Tn graph ✓ Show asymmetric error	ŧ.,					••	• •	8		
30,000- 25,000- 15,000- 5,000- 0 5 10	15 20 25 30 35 4 Time (s)		8 6 4 2 0 0	2 3	4 S	6 7 RCycle	0.9	10 11	xyori 3 2 1 0	50	T00 150 200 250 300 350 400 450 50 D001(0))
urrent Grain		Lw/	ix Data	Summary D	ala						Reader ID(163): Rico 5
		Un	Dose	Signal	BG	Test Sign	Test BG	$L\pi T\pi$	Lu Ta Er	1	Calcinion 5.123 8 0.012 Gymnion 2003/2
		N	Natura	194058	7271	38002	6007	5,839	0.091	1	Parameters Use prev. BG for test doors
		81	125	38042	4634	31482	5197	1.271	0.021		Use recycled points for fitting
regration Limits		82	250	28464	4729	29848	5080	2.170	0.036		race gowin curve though argin
nat 1 🕃 10 8	5	83	500	93589	5524	30655	5391	3.489	0.056		Error Calculations
11 🕲 241 🖁	5	8.4	1000	145570	6970	34138	6020	4.926	0.078		Measurement error (%)
simum Number of		10	2000	220.	10029	41000	/441	0,1/8	0.090		Monte Lato repeatz 500
ice 🛄 🏠		87	4000	110111		22004	12003	1.000	0.112		Acceptance Calmin
éccept √ Unda	Curve Filling: Double Expon Y = a (1-exp[-bx]) + c (1-exp a 4.22+000:65.25:001 b 5.1E-003e1.8E-003 c 3.72+000:85.75:001 d 2.565:002-3354:003	eritial (-də:[) + g		Result: ED (5y) Recycling 0.95±0.0 0.95±0.0	13 2 (R 9/R - 2 (R 10/R 2 (R 10/R	4 09 ± 6.78 6.42 21 21	8ec 26	uperation a 0.1 % (RB/N)		Image: Use errors when applying criteria 10 Image: Provide error 10 I

Fading test

Fading test and estimation of fading rate is now made possible. You select the relevant data as you do for the SAR procedure and press "Fading test -> Single Aliquot Fading/ Single Grain Fading"

📲 Ana	lyst: kr2023	c_fading.	BIN	1.81		1	11				x
File E	Edit Reco	rds Ana	lysis Expor	t Display V	Vindow	Options Al	bout				
	🖇 🚽 X	l Di	Multiple A	liquot ED 🔹 🕨							
Bec #	Selece	P	SA Regene	ration 🕨 🕨	Type	Irrad Time	Times	ince Irr			
413	True		Componer	nt Fitting	ral	150.00	431	inco ini			
414	False	41	Flexi		ral	150.00	694				
415	False	41	Fading Tes	t	Si	nale Aliauot Fi	ading	1			
416	True	41-	Zb	Nati	Si	ngle Grain Fad	lina				
417	False	41	26	Natu		100.00	170	1			
418	True	41	26	Natu	ral	150.00	430				
419	False	41	26	Natu	ral	150.00	694				_
420	False	41	26	Natu	ral	450.00	472				
421	True	1	30	Natu	ral	450.00	123591				
422	False	1	30	Natu	ral	150.00	171				
423	True	1	30	Natu	ral	150.00	431				
424	False	1	30	Natu	ral	150.00	694				
425	False	1	30	Natu	ral	450.00	472				
426	True	1	30	Natu	ral	450.00	732				-
Current	File									Display Information:	_
File: Record Selecte Highligh Subtrac Allow d Normali <u>Current</u> Time/T Lumine	kr20 Is: sd: hted: st Backgrour ata to be shi isation (<u>Mouse Pos</u> emperature: scence Sign	123c_fading 1d fted None <u>ition</u>	4.BIN 900 336 1 	40,000 · 35,000 · 25,000 · 25,000 · 10,000 · 10,000 · 10,000 · 5,000 · 0 ·	20 40	60 80 10 Time	0 120 14 (S)	160 11	30 200	Background Shift Integral 1 Integral 2 Integral 3 Integral 4 Curve No TimeTick On time Stimulation Period Gating start Gating and Photon Timer enabled PMT gating enabled PMT gating enabled	A III
	10.10 12	Nov 12	-							User Test	-
_	10.10 12				_				_	0361. 1650	_

The time between start of irradiation and start of measurement is automatically recorded in the bin-file. This time is compensated for the duration of the irradiation to give t* (Aitken (1985), Appendix F, p. 280)

$$t^* = \frac{1}{e} \frac{t_2^{\frac{t_2}{t_2 - t_1}}}{t_1^{\frac{t_1}{t_2 - t_1}}}$$

where t_2 is the time since start of irradiation and t_1 is the time since end of irradiation .

From this the fading rate g (in %/decade based on t_0 = 48 hours) is estimated.

